ERRATUM: THE METHOD OF ORBITS FOR REAL LIE GROUPS

JAE-HYUN YANG

Erratum

In the article The Method of Orbits for Real Lie Groups by Jae-Hyun Yang [Kyung-
pook Math. J., 42 (2) (2002), 199-272], Section 8.2 (pp.231-237) should be corrected as
follows :

8.2. The Coadjoint Orbits of Picture

Now we find the coadjoint orbits of the Heisenberg group Hﬂ({]’h) and describe the con-
nection between the coadjoint orbits and the unitary dual of Hl&g ) explicitly.

For brevity, we let G := Hﬂ({]’h) as before. Let g be the Lie algebra of G and let g* be
the dual space of g. We recall that Sym(h,R) denotes the space of all h x h real symmetric

matrices. We observe that g can be regarded as the subalgebra consisting of all 2(g + h) X
2(g + h) real matrices of the form

0 0 0 3
Xy =0 0 0 7 | aBeR™, 5 cSym(hR)
0 00 O
in the Lie algebra sp(2(g + h),R) of the symplectic group Sp(2(g + h),R). An easy compu-

tation yields
[X(CMaB?’Y)a X<57 67§>] - X(0707at6 + Eta - /Bt(s - 6tﬁ)

The dual space g* of g can be identified with the vector space consisting of all 2(g + h) x
2(g + h) real matrices of the form

0

O OO

F(a,b,c) :== ,a,beRM9) ¢ e Sym(h,R)

>t O
o Fo g
OO OO

so that
(8'24) <F(a’ b, C)vX(aa B7'7)> = U(F(av b, C) X(O‘vﬁa’Y)) = 2J(taa + tbﬁ) + U(C’Y)'

The adjoint representation Adg of G is given by Adg(9)X = gXg~ ! for g€ G and X € g.
For g € G and F € g*, gFg~"! is not of the form F(a,b,c). We denote by (gFg~!), the

0
— part

* O O
* % O %
* O O O
OO OO
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of the matrix gFg~!. Then it is easy to see that the coadjoint representation Ad}, : G —
GL(g*) is given by Ad},(g9)F = (gFg1)., where g € G and F € g*. More precisely,

(8.25) Adi(9)F(a,b,c) = F(a+ cu,b—cA,c),
where g = (A, i, k) € G. So the coadjoint G-orbit Q,; at F'(a,b,0) € g* is given by
(8.26) Qo p = AdG(G) F(a,b,0) = {F(a,b,0)}, a single point.

And for any a,b € R"™9) and ¢ € Sym(h,R) with 1 < k = rank ¢ < h, the coadjoint G-orbit
Quper at Fa,b,c) € g* is given by

(8.27) Qapek = { F(a+cu,b—che)| A\ peRM9 } >~ R(k9) 5 R,

Therefore the coadjoint G-orbits in g* fall into two classes:

(I) The single points { Qap ‘ a,b e RM9) } located in the plane ¢ = 0.
(IT) The affine planes { Qupcx | a,b € R™9), c € Sym(h,R), 1 <rankc=k <h}.

In other words, the orbit space O(G) of coadjoint orbits is parametrized by

a,b e RM9 ¢ e Sym(h,R), 1 <k =ranke < h;
(a,b)—plane = R(:9) x R(9),

Definition 8.1. (a) The single point coadjoint orbits of the type Qg are said to be the
extremely degenerate G-orbits in g*.

(b) The flat coadjoint orbits of the type Qg pcx with 1 < k =rankc < h are said to be the
(h — k)-degenerate G-orbits in g*.

(c) The flat coadjoint orbits of the type Qg b c.m with rank ¢ = m are said to be the nondegenerate
G-orbits in g*.

Since G is a connected and simply connected 2-step nilpotent Lie group, according to A.
Kirillov (cf. [47] or [48, Theorem 1, p.249]), the unitary dual G of G is given by

(8.28) G_ H QabckH( h.9) XR )>

a,b,c.k

where ][ denotes the disjoint union, a and b run over R9) and ¢ (1 < k = ranke < h)
runs over Sym(h,R). We observe that Qqp .1 = R*9) x R*9) The topology of G may
be described as follows. The topology on {Qupex | a,b € R™9 0 % ¢ € Sym(h,R), 1 <
k: < h} is the usual topology of the Euclidean space and the topology on {F(a b,0)|a,be

h9)1 is the usual Euclidean topology. But a sequence on {Qaper|abe R(9) 0 £ ¢ e
Sym(h R), 1 <k < m} which converges to 0 in the usual topology converges to the whole
Euclidean space R(9) x R("9) x Sym(h,R) in the topology of G. This is just the quotient
topology on g*/G so that algebraically and topologically G= 9°/G.

It is well known that each coadjoint orbit is a symplectic manifold. We will state this
fact in detail. For the present time being, we fix an element F' of g* once and for all. We
consider the alternating R-bilinear form By on g defined by

(8.29) Br(X,Y) € (F[X,Y]) = (adi(Y)F, X), X,Y €g,
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where ady : g — End(g*) denotes the differential of the coadjoint representation Adg; :
G — GL(g*). More precisely, if ' = F(a,b,c), X = X(«a,,7), and Y = X(d,¢,§), then
(8.30) Br(X,Y)=oc{c(a‘e+ela— 3% —56'8)}.
For F € g*, we let

Gr={geG|Adg(g)F =F}
be the stabilizer of the coadjoint action Ad* of G on g* at F. Since G is a closed subgroup

of G, GF is a Lie subgroup of G. We denote by gr the Lie subalgebra of g corresponding
to Gg. Then it is easy to show that

(8.31) gr =radBr ={X eglad;(X)F=0}.

Here rad By denotes the radical of By in g. We let Br be the non-degenerate alternating
R-bilinear form on the quotient vector space g/rad Bp induced from Bp. Since we may
identify the tangent space of the coadjoint orbit Qp = G/Gp with g/gr = g/rad Bp, we
see that the tangent space of Qp at F' is a symplectic vector space with respect to the
symplectic form Bp.

Now we are ready to prove that the coadjoint orbit Qp = Adf(G)F is a symplectic
manifold. We denote by X the smooth vector field on g* associated to X € g. That means
that for each ¢ € g*, we have

(8.32) X(0) = adi(X) ¢.

We define the differential 2-form Bg, on Qf by

(8.33) B, (X,Y) = Bo,(ad}(X)F,ad(Y)F) := Bp(X,Y),
where X, Y € g.

Lemma 8.2. Bgq, is non-degenerate.

Proof. Let X be the smooth vector field on g* associated to X € g such that BQF(X, IN/) =0
forall Y with Y € g. Since Bq,(X,Y) =Bp(X,Y)=0foralY € g, X € gp. Thus X = 0.
Hence Bgq,. is non-degenerate. O

Lemma 8.2. Bgq, is closed.

Proof. If )?/17 )?2, and ng are three smooth vector fields on g* associated to X1, X2, X3 € g,
then

B, (X1, X2, X3)
= X1(Bo, (X2, X3)) — Xa(Ba, (X1, X3)) + X3(Ba, (X1, X2))
—Bo,.([X1, Xa], X3) + Bo, (X1, X3], X) — Ba,. ([ X2, X3, X1)
= —(F, [[X1, Xo], Xa] + [[X2, X5], Xu] + [ X5, Xi], Xa])
=0 (by the Jacobi identity).
Therefore Bq,, is closed. O

In summary, (2, Bq,) is a symplectic manifold of dimension 2kg (1 <k < h) or 0.
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In order to describe the irreducible unitary representations of G corresponding to the
coadjoint orbits under the Kirillov correspondence, we have to determine the polarizations
of g for the linear forms F' € g*.

Case I. F = F(a,b,0), a,be R(9): the extremely degenerate case.

According to (8.26), Qr = Q4 = {F(a,b,0)} is a single point. It follows from (8.30) that
Br(X,Y) =0 for all X,Y € g. Thus g is the unique polarization of g for F. The Kirillov
correspondence says that the irreducible unitary representation m,; of G' corresponding to
the coadjoint orbit €2, is given by

(8.34) Tap(exp X(a, 8,7)) = e2mi (F.X (7)) _ pAmio(tac+'bB)
That is, m, is a one-dimensional extremely degenerate representation of G.
Case II. F=F(a,b,c), a,b € RM9) ¢ e Sym(h,R) with 1 <ranke < h;
According to (8.27),
QF = Qo pek = {F(a +ep,b—che)| \ue R(9) }
By (8.30), we see that
(8.35) t={X(0,8,7)| B R™ ~eSym(h R)}

is a polarization of g for F, i.e.,t is a Lie subalgebra of g subordinate to F' € g* which
is maximal among the totally isotropic vector subspaces of g relative to the alternating
R-bilinear form Br. Let K be the simply connected Lie subgroup of G corresponding to
the Lie subalgebra £ of g. We let

Xa,b,c,k;t * K — CT

be the unitary character of K defined by
(8.36) Ya bck'é(eXpX«)va’Y)) _ e27ri (F,X(0,8/7)) _ e27ria(c'y+2/jtb).
The Kirillov correspondence says that the irreducible unitary representation mqp ¢t of G
corresponding to the coadjoint orbit Qp = Qg .1 is given by
(8.37) Tab,c,kt = Ind% Xa,b,c,k;t-
For a, b, Ei,g e R"9) we have

Wa,b,c,k;f(exp X(Oa Oa ’Y)) = WaVEC’k;f(eXp X(Oa 07 7))
for all v € Sym(h,R). According to Kirillov’s Theorem (cf. [47]), 74 p c ke is unitarily equiv-

alent to 7. for all a, b, Zi,g e R(9) . So we denote the equivalence class of Tab,c ke DY

a,g,c,k;E
Te ke According to Kirillov’s Theorem (cf. [47]), we know that the induced representation
Te kst 18, Up to equivalence, independent of the choice of a polarization of g for F. Thus we de-

note the equivalence class of 7 r.¢ by 7. 1. We see that 7., is realized on the representation
space L2(R"9) d¢) as follows:

(8.38) (e e(9).f)(€) = ePmotelrti A28} £ 4 ),
where g = (A, i1, k) € G and € € R("9), Using the fact that

exp X (o, 8,7) = <a,ﬁ,7+ %(atﬁ —Btoz)> ,
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we see that 7.y is nothing but the Schrédinger representation U, = U(o.) of G induced

from the one-dimensional unitary representation o, of K given by o.((0, i, )) = €27 7(¢H) ],

We note that 7. is the representation of G with central character x. : 3 — C; given
by Xex((0,0,K)) = e?9(") Here 3 = {(0,0,x) | x € Sym(h,R) } denotes the center of G.

It is well known that the monomial representation (T('C’k, L? (R(hvg), df)) of G extends to
an operator of trace class

(8.39) mii(9) : LA (R de) — L2(RM9), dg)

for all ¢ € C°(G). Here C°(G) is the vector space of all smooth functions on G with
compact support. We let C2°(g) and C(g*) the vector space of all smooth functions on g
with compact support and the vector space of all continuous functions on g* respectively.
If f € C>®(g), we define the Fourier cotransform

CFy: C(g) — C(g7)
by
(8.40) CH(P) () i= [ 107 Xax,

g

where F’ € g* and dX denotes the usual Lebesgue measure on g. According to A. Kirillov
(cf. [47]), there exists a measure 5 on the coadjoint orbit

Qupor ~RED » RE9)
(a,b e R™9) . ¢ e Sym(h,R), rankc =k, 1 <k < h)

which is invariant under the coadjoint action of G such that
(3.41) trmli(0) = | CFo(6 0 exp) (F)dB(F)
Qe

holds for all test functions ¢ € C2°(G), where exp denotes the exponentional mapping of g
onto GG. We recall that
/ ¢ 7Tc k ) d

where ¢ € C°(G) and f € L2( mn) d¢). By the Plancherel theorem, the mapping
S(G/3) 3 ¢ — () € TC(L2 R, dg))

extends to a unitary isometry

(8.42) w25t LA(G/3, xex) — HS(L* (R™9), dg))

of the representation space L?(G/3,Xck) of Indg X,k onto the complex Hilbert space
HS (L2 (R(h’g), df)) consisting of all Hilbert-Schmidt operators on L? (R(h’g), df), where S(G/
3) is the Schwartz space of all infinitely differentiable complex-valued functions on G/
3 = RM9) x R(9) that are rapidly decreasing at infinity and TC (L2 (R(h’g), dﬁ)) denotes
the complex vector space of all continuous C-linear mappings of L? (R(hﬂ), df) into itself
which are trace class.

In summary, we have the following result.
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Theorem 8.4. For F = F(a,b,0) € g*, the irreducible unitary representation map of G
corresponding to the coadjoint orbit Qp = g, under the Kirillov correspondence is an
extremely degenerate representation of G given by

Tap(exp X (o, B,7)) = e'mioCaation),

On the other hand, for F = F(a,b,c) € g* with a,b € R™9) ¢ € Sym(h,R) with 1 < k =
rank ¢ < h, the irreducible unitary representation (7Tc7k,L2 (R(h’g),dé)) of G corresponding
to the coadjoint orbit Qg under the Kirillov correspondence is unitary equivalent to
the Schrodinger representation (UC,L2 (]R(h’g),df)) and this representation m.j 1S square
integrable modulo its center 3. For all test functions ¢ € C°(G), the character formula

Tr (Wz,k(ﬁb)) =C(¢,c¢) / $(0,0, k) 2T o(cR) 7,
Sym(h,R)

holds for some constant C(¢,c) depending on ¢ and ¢, where dk is the Lebesque measure on
the Euclidean space Sym(h,R).

Now we consider the subgroup K of G given by
K:={(0,ur) €G|pc R™9) | x € Sym(h,R) }.

The Lie algebra £ of K is given by (8.35). The dual space £* of £ may be identified with the
space

{F(0,b,c)| be R™ ¢ e Sym(h,R)}.
We let Adj : K — GL(¥*) be the coadjoint representation of K on £*. The coadjoint
K-orbit wy . at F(0,b,¢) € ¢ with k = rankc is given by

(843) Wh,e,k = Ad%(K) f71(()7 b’ C) = {F(CM, b’ C) | WwE R(}hg) }

Since K is a commutative group, [¢,¢] = 0 and so the alternating R-bilinear form Bp on
t associated to F' := F(0,b,c) identically vanishes on ¢ x ¢ (cf.(8.29)). ¢ is the unique
polarization of ¢ for FF = F'(0,b,c). The Kirillov correspondence says that the irreducible
unitary representation x; . of K corresponding to the coadjoint orbit wy . is given by

(8.44) Xbe(exp X (0, 8, 7)) = €27 (FOLIXOBM) _ 2nio(2b'5+c)
or
(8.45) Xoe((0, 11, K)) = 2T 7@PIEER) (0 k) € K

For 0 # ¢ € Sym(h,R) with 1 < k = rankc < h, we let 7., be the Schrédinger represen-
tation of G given by (8.38). We know that 7. is the irreducible unitary representation of
G corresponding to the coadjoint orbit

Quper = Ad5(G) Fla,b, ) = {F(a Fepb—ehe)|abe RO } .

Let p : g* — " be the natural projection defined by p(F(a,b,c)) = F(0,b,c). Obviously
we have
p(Qa,b,c,k) = {F(()? ba C) ’ be R(hy)} = U Wh,c,k+
beR(,9)
According to Kirillov’s Theorem (cf. [48, Theorem 1, p.249], the restriction 7. x|x of m.
to K is the direct integral of all one-dimensional representations x;. of K (b € R(’“g)).
Conversely, we let x; . be the element of K corresponding to the coadjoint orbit wy . j of
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K. The induced representation Ind% Xb,c is nothing but the Schrodinger representation 7 .
The coadjoint orbit Qg .k of G is the only coadjoint orbit such that Qg pcx NP~ H(wWp e k) is
nonempty.
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