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Erratum

In the book “Heisenberg Groups, Functions and the Weil Representation” by Jae-Hyun
Yang [KM Kyung Moon Sa, Seoul, 2012, 155pp. ISBN: 978-89-6105-599-4], Section 1.7
(pp. 58-64) should be corrected as follows :

1.7 Coadjoint Orbits

In this subsection, we find the coadjoint orbits of the Heisenberg group HI(R{n’m) and de-

)

scribe the connection between the coadjoint orbits and the unitary dual of Hﬂ({n’m explicitly.

For brevity, we let G := ngl’m) as before. Let g be the Lie algebra of G and let g*
be the dual space of g. We recall that Sym(m,R) denotes the space of all m x m real
symmetric matrices. We observe that g can be regarded as the subalgebra consisting of all

2(m +n) x 2(m + n) real matrices of the form

000 B
0 m,n
X By)=[0 0 0 | aseR™, 5 esymimR)
00 0 O

in the Lie algebra sp(2(m + n),R) of the symplectic group Sp(2(m + n),R). An easy com-
putation yields

(X (o, B,7), X(8,¢,6)] = X(0,0,a’e+eta—B16—6'B).
The dual space g* of g can be identified with the vector space consisting of all 2(m + n) x
2(m + n) real matrices of the form

F(a,b,c) :== ,a,be R ¢ e Sym(m, R)

SNl
o oot

oo o
oo oo

so that
<F(a7 b, C)vX(OQBafY)) = G(F(a7 b, C) X(avﬁa')/)) = 2U(t04a + tbﬁ) + 0(0'7). (1'7'1)

The adjoint representation Adg of G is given by Adg(9)X = gXg ! for g € G and X € g.
For g € G and F € g*, gFg~! is not of the form F(a,b,c). We denote by (¢Fg~!), the
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of the matrix gFg~!. Then it is easy to see that the coadjoint representation Ad}, : G —
GL(g*) is given by Ad},(g9)F = (gFg1)., where g € G and F € g*. More precisely,

Adg(g)F(a,b,¢) = F(a+ cpu,b— c),c), (1.7.2)
where g = (A, i1, k) € G. So the coadjoint G-orbit Q,; at F'(a,b,0) € g* is given by
Qap = AdG(G) F(a,b,0) = {F(a,b,0)}, a single point. (1.7.3)

And for any a,b € R(™™ and ¢ € Sym(m,R) with 1 < k = rank ¢ < m, the coadjoint
G-orbit Qg p 1 at F'(a,b,c) € g* is given by

Qaber = { Fla+cp,b—che)| A p e ROW } o R(bn) 5 RO (1.7.4)

Therefore the coadjoint G-orbits in g* fall into two classes:

(I) The single points { Qap ‘ a,b e Rm:n) } located in the plane ¢ = 0.
(IT) The affine planes { Qqp .k ! a,b € R ¢ e Sym(m,R), 1 <rank c=k <m }.

In other words, the orbit space O(G) of coadjoint orbits is parametrized by

a,b c R(m,n)7 cE Sym(m,R% 1 < k = rankc < m;
(a, b) —plane = Rmn) » R(m.n)

Definition. (a) The single point coadjoint orbits of the type Qqp are said to be the extremely
degenerate G-orbits in g*.

(b) The flat coadjoint orbits of the type Qg p ok with 1 < k =rankc < m are said to be the
(m — k)-degenerate G-orbits in g*.

(c) The flat coadjoint orbits of the type Qg b c.m with rank ¢ = m are said to be the nondegenerate
G-orbits in g*.

Since G is a connected and simply connected 2-step nilpotent Lie group, according to A.
Kirillov (cf. [16] or [17, Theorem 1, p.249]), the unitary dual G of G is given by

a=1] oabck]_[< R(m) me”>), (1.7.5)

a,b,c.k

where [] denotes the disjoint union, a and b run over R and ¢ (1 < k = rankc¢ < m)
runs over Sym(m,R). We observe that Qg = (k) 5 R*1) - The topology of G may
be described as follows. The topology on {Qupex | a,b € R™™ 0 # ¢ € Sym(m,R), 1 <
k <m} is the usual topology of the Euclidean space and the topology on {F(a, b, 0)|a,be

™} is the usual Euclidean topology. But a sequence on {Qaperl|abe R 0 £ ¢ e
Sym(m,R), 1 < k < m} which converges to 0 in the usual topology converges to the whole
Euclidean space R(™™) x R(™") x Sym(m, R) in the topology of G. This is just the quotient
topology on g*/G so that algebraically and topologically G= 9°/G.

It is well known that each coadjoint orbit is a symplectic manifold. We will state this
fact in detail. For the present time being, we fix an element F' of g* once and for all. We
consider the alternating R-bilinear form By on g defined by

Br(X,Y) € (F[X,Y]) = (adi(Y)F, X), X,Y €g, (1.7.6)
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where ady : g — End(g*) denotes the differential of the coadjoint representation Adg; :
G — GL(g*). More precisely, if ' = F(a,b,c), X = X(«a,,7), and Y = X(d,¢,§), then

Br(X,Y)=oc{c(ate+e'a—p'%6—6'8)}. (1.7.7)
For F € g*, we let
Gr={geG|Adg(g)F =F}
be the stabilizer of the coadjoint action Ad* of G on g* at F. Since G is a closed subgroup

of G, G is a Lie subgroup of G. We denote by gr the Lie subalgebra of g corresponding
to Gp. Then it is easy to show that

gr=radBp ={X eglad;(X)F=0}. (1.7.8)

Here rad By denotes the radical of By in g. We let B r be the non-degenerate alternating
R-bilinear form on the quotient vector space g/rad Bp induced from Bp. Since we may
identify the tangent space of the coadjoint orbit Qp = G/Gp with g/gr = g/rad Bp, we
see that the tangent space of Qp at F' is a symplectic vector space with respect to the
symplectic form Br.

Now we are ready to prove that the coadjoint orbit Qp = Ad;(G)F is a symplectic

manifold. We denote by X the smooth vector field on g* associated to X € g. That means
that for each ¢ € g*, we have

X(0) = ad}(X) L. (1.7.9)
We define the differential 2-form Bg, on Q2 by
Bq,(X,Y) = Bo,(ad}(X)F,ad}(Y)F) :== Bp(X,Y), (1.7.10)

where X, Y € g.

Lemma 19. Bq, is non-degenerate.

Proof. Let X be the smooth vector field on g" associated to X € g such that Bq,, ()N( , }7) =0
forall Y with Y € g. Since B, (X,Y) =Bp(X,Y) =0forallY € g, X € gp. Thus X = 0.
Hence Bg,, is non-degenerate. ]

Lemma 20. Bg, is closed.

Proof. If )?/1, )?/2, and X; are three smooth vector fields on g* associated to X1, Xo, X3 € g,
then

dBo, (X1, X3, X3)
= X1(Bay (X2, X3)) — Xa(Ba, (X1, X3)) + Xs(Ba, (X1, X2))
B, ([X1, X2, X5) + Ba, ([X1, X3], X2) — Bay ([X2, X3], X1)
= —(F, [[X1, Xo], X3] + [[X2, X5], Xu] + [ X3, Xa], Xo])
=0 (by the Jacobi identity).
Therefore Bq,, is closed. O

In summary, (2p, B, ) is a symplectic manifold of dimension 2kn (1 < k < m) or 0.

In order to describe the irreducible unitary representations of G corresponding to the
coadjoint orbits under the Kirillov correspondence, we have to determine the polarizations
of g for the linear forms F € g*.
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Case I. F = F(a,b,0), a,b € R(™"); the extremely degenerate case.

According to (1.7.3), Qp = Qqp = {F(a,b,0)} is a single point. It follows from (1.7.7)
that Bp(X,Y) = 0for all X,Y € g. Thus g is the unique polarization of g for F. The Kirillov
correspondence says that the irreducible unitary representation m,; of G' corresponding to
the coadjoint orbit €2, is given by

Tap(exp X(a, B,7)) = ™ (FX (7)) = gimio(*aa+7bB), (1.7.11)
That is, m, is a one-dimensional extremely degenerate representation of G.
Case IL. F=F(a,b,c), a,b e R"™" ¢ e Sym(m,R) with 1 < ranke < m;
According to (1.7.4),
Qr = Qaper = {F(a +eu,b—che)| A\ pe R(m:m) }
By (1.7.7), we see that
t={X(0,8,7) ‘ B eR™M ~ e Sym(m,R) } (1.7.12)

is a polarization of g for F, i.e.,t is a Lie subalgebra of g subordinate to F' € g* which
is maximal among the totally isotropic vector subspaces of g relative to the alternating
R-bilinear form Bp. Let K be the simply connected Lie subgroup of G corresponding to
the Lie subalgebra £ of g. We let

. X
Xabekt - K — C]

be the unitary character of K defined by

— 2mi(FX(0,87)) _ g2mio(cy+2B%D) (1.7.13)

Xa,b,e.kze(exp X (0, 8,7))
The Kirillov correspondence says that the irreducible unitary representation mgp . ¢ of G
corresponding to the coadjoint orbit Qp = €, .1 is given by
Tabekt = MAF Xabe ke (1.7.14)
For a, b, 5,5 e R™™)  we have
Tabc ke(exp X (0,0,7)) = TFE,Z,C,k;E(eXp X(0,0,7))
for all v € Sym(m,R). According to Kirillov’s Theorem (cf.[16]), 74 p ke is unitarily

equivalent to for all a, b, E,g e R(m")So we denote the equivalence class of Tab,c kit

,Z,c,k;é
by 7 k:e. According to Kirillov’s Theorem (cf. [16]), we know that the induced representation
Te kst 1S, UP to equivalence, independent of the choice of a polarization of g for F. Thus we
denote the equivalence class of 7. .¢ by 7. . We see that . j, is realized on the representation

space L2(R(™™) d¢) as follows:
(e (9)f)(€) = ottt A2l (¢ 4 ), (1.7.15)
where g = (\, 1, k) € G and & € R(™"), Using the fact that

exp X(a,8.7) = (. + 5 (a8 - 'a) )

we see that 7 is nothing but the Schrodinger representation U, = U(o.) of G induced
from the one-dimensional unitary representation o, of K given by o.((0, u, k)) = e?™ )|
(cf. (1.4.6) and (1.4.8)). We note that 7., is the representation of G with central character
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Xek @ 3 — C given by x.x((0,0,K)) = €2™7®) Here 3 = {(0,0,x)| k € Sym(m,R) }
denotes the center of G.

It is well known that the monomial representation (7rc7k, L? (R(m’"), dé)) of G extends to
an operator of trace class

mop(@) : LR dg) — L2(RU™™, dg) (1.7.16)

for all ¢ € C°(G). Here C°(G) is the vector space of all smooth functions on G with
compact support. We let C2°(g) and C(g*) the vector space of all smooth functions on g
with compact support and the vector space of all continuous functions on g* respectively.
If f € C>(g), we define the Fourier cotransform

Chy: C(g) — C(g7)
by
(CFy(f / F(X) 2 XD gx, (1.7.17)
where F’ € g* and dX denotes the usual Lebesgue measure on g. According to A. Kirillov
(cf. [47]), there exists a measure 3 on the coadjoint orbit
Qape s = REM x REW
(a,b e R o e Sym(m,R), rankc=k, 1 <k <m)

which is invariant under the coadjoint action of G such that
tr e (9) —/Q CFy(¢ o exp)(F")dB(F) (1.7.18)

holds for all test functions ¢ € C2°(G), where exp denotes the exponentional mapping of g
onto G. We recall that
/ ¢ 7Tc k ) d

where ¢ € C°(G) and f € L2(R mn) d¢). By the Plancherel theorem, the mapping
S(G/3) 3 ¢ () € TC(LAR™™Y, d8))
extends to a unitary isometry
72p 1 L*(G/3,xcn) — HS(LA(RU™™, d¢)) (1.7.19)

of the representation space LQ(G/B,chk) of Ind3G X,k onto the complex Hilbert space
HS(L2 (R(m’”),df)) consisting of all Hilbert-Schmidt operators on L2 (R(m’”),dﬁ), where
S(G/3) is the Schwartz space of all infinitely differentiable complex-valued functions on G/
3 = Rmn) x RO™1) that are rapidly decreasing at infinity and TC (L2 (]R(m’”), dé)) denotes
the complex vector space of all continuous C-linear mappings of L? (R(m’”), d{) into itself
which are trace class.

In summary, we have the following result.

Theorem 9. For F' = F(a,b,0) € g*, the irreducible unitary representation mqp of G
corresponding to the coadjoint orbit Qp = $,; under the Kirillov correspondence is an
extremely degenerate representation of G given by

map(exp X (a, B,7)) = e'mioCeatid),
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On the other hand, for F = F(a,b,c) € g* with a,b € R0™ ¢ e Sym(m,R) with 1 < k =
rank ¢ < m, the irreducible unitary representation (Wc,k;, L? (R(m’”), df)) of G corresponding
to the coadjoint orbit Qg p .1 under the Kirillov correspondence is unitary equivalent to

the Schréodinger representation (UC,L2 (R(m’"),df)) and this representation m.y is square
integrable modulo its center 3. For all test functions ¢ € C°(G), the character formula

Tr (ﬂ'ik(qb)) =C(¢,0) / #(0,0,K) e2mio(er) g

Sym(m,R)

holds for some constant C(¢,c) depending on ¢ and c, where dk is the Lebesque measure on
the Euclidean space Sym(m,R).

Now we consider the subgroup K of G (cf. (1.4.1)) given by
K :={(0,ur) € G‘ peRM™M ke Sym(m,R) b

The Lie algebra ¢ of K is given by (1.7.12). The dual space £* of ¢ may be identified with
the space
{F(0,b,¢)| b€ R™™ ¢ € Sym(m,R)}.

We let Adj : K — GL(#*) be the coadjoint representation of K on £*. The coadjoint
K-orbit wy . at F(0,b,c) € £ with k = rankc is given by

Wher = Adi (K) F(0,b,¢) = {F(cp, b, ¢) | p € RM™ }. (1.7.20)
Since K is a commutative group, [¢ €] = 0 and so the alternating R-bilinear form Br on
¢ associated to F' := F(0,b,c) identically vanishes on £ x ¢ (cf.(1.7.6)). ¢ is the unique

polarization of ¢ for FF = F'(0,b,c). The Kirillov correspondence says that the irreducible
unitary representation x; . of K corresponding to the coadjoint orbit wy . is given by

Xbc(GXPX(O,ﬁ,W)) — 2mi (F(0,b,0),X(0,8,7)) _ g2mic(2b'B+c7) (1.7.21)

or

Xbe((0, 1, 1)) = €2TOEIEER) (0, 1y k) € K. (1.7.22)

For 0 # ¢ € Sym(m,R) with 1 < k = rank ¢ < m, we let 7., be the Schrédinger represen-

tation of G given by (1.7.15). We know that 7, is the irreducible unitary representation
of G corresponding to the coadjoint orbit

Qapek = AdG(G) F(a, b, c) = {F(a +cp,b—ch ) |a,b e R(mm) } .

Let p : g — € be the natural projection defined by p(F(a,b,c)) = F(0,b,c). Obviously
we have
p(Qa,b,c,k) = {F(O, b, C) } be R(mm)} = U Wh,c,k-
beR(m,n)

According to Kirillov’s Theorem (cf. [17, Theorem 1, p.249], the restriction 7. y|x of 7.
to K is the direct integral of all one-dimensional representations x;. of K (b € R(™m),
Conversely, we let x; . be the element of K corresponding to the coadjoint orbit wy ) of
K. The induced representation Ind% Xb,c is nothing but the Schrodinger representation 7. .
The coadjoint orbit €, .1 of G is the only coadjoint orbit such that 44 .« ﬂp‘l(wb7c7k) is
nonempty.
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