ERRATUM: HEISENBERG GROUPS, FUNCTIONS AND THE WEIL REPRESENTATION

JAE-HYUN YANG

Erratum

In the book "Heisenberg Groups, Functions and the Weil Representation" by Jae-Hyun Yang [KM Kyung Moon Sa, Seoul, 2012, 155pp. ISBN: 978-89-6105-599-4], Section 1.7 (pp. 58–64) should be corrected as follows:

1.7 Coadjoint Orbits

In this subsection, we find the coadjoint orbits of the Heisenberg group $H_{\mathbb{R}}^{(n,m)}$ and describe the connection between the coadjoint orbits and the unitary dual of $H_{\mathbb{R}}^{(n,m)}$ explicitly.

For brevity, we let $G := H_{\mathbb{R}}^{(n,m)}$ as before. Let \mathfrak{g} be the Lie algebra of G and let \mathfrak{g}^* be the dual space of \mathfrak{g} . We recall that $\operatorname{Sym}(m,\mathbb{R})$ denotes the space of all $m \times m$ real symmetric matrices. We observe that \mathfrak{g} can be regarded as the subalgebra consisting of all $2(m+n) \times 2(m+n)$ real matrices of the form

$$X(\alpha,\beta,\gamma) := \begin{pmatrix} 0 & 0 & 0 & {}^t\beta \\ \alpha & 0 & \beta & \gamma \\ 0 & 0 & 0 & -{}^t\alpha \\ 0 & 0 & 0 & 0 \end{pmatrix}, \ \alpha,\beta \in \mathbb{R}^{(m,n)}, \ \gamma \in \operatorname{Sym}(m,\mathbb{R})$$

in the Lie algebra $\mathfrak{sp}(2(m+n),\mathbb{R})$ of the symplectic group $Sp(2(m+n),\mathbb{R})$. An easy computation yields

$$[X(\alpha,\beta,\gamma), X(\delta,\epsilon,\xi)] = X(0,0,\alpha^{t}\epsilon + \epsilon^{t}\alpha - \beta^{t}\delta - \delta^{t}\beta).$$

The dual space \mathfrak{g}^* of \mathfrak{g} can be identified with the vector space consisting of all $2(m+n) \times$ 2(m+n) real matrices of the form

$$F(a,b,c) := \begin{pmatrix} 0 & {}^{t}\!\! a & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & {}^{t}\!\! b & 0 & 0 \\ b & c & -a & 0 \end{pmatrix}, \ a,b \in \mathbb{R}^{(m,n)}, \ c \in \operatorname{Sym}(m,\mathbb{R})$$

so that

$$\langle F(a,b,c), X(\alpha,\beta,\gamma) \rangle := \sigma(F(a,b,c) X(\alpha,\beta,\gamma)) = 2 \sigma({}^t \alpha \, a + {}^t b \, \beta) + \sigma(c \, \gamma). \tag{1.7.1}$$

The adjoint representation Ad_G of G is given by $\operatorname{Ad}_G(g)X = gXg^{-1}$ for $g \in G$ and $X \in \mathfrak{g}$. For $g \in G$ and $F \in \mathfrak{g}^*$, gFg^{-1} is not of the form F(a, b, c). We denote by $(gFg^{-1})_*$ the

> ~ - \

$$\begin{pmatrix} 0 & * & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & * & 0 & 0 \\ * & * & * & 0 \end{pmatrix} - \text{part}$$

JAE-HYUN YANG

of the matrix gFg^{-1} . Then it is easy to see that the coadjoint representation $\operatorname{Ad}_{G}^{*}: G \longrightarrow GL(\mathfrak{g}^{*})$ is given by $\operatorname{Ad}_{G}^{*}(g)F = (gFg^{-1})_{*}$, where $g \in G$ and $F \in \mathfrak{g}^{*}$. More precisely,

$$\operatorname{Ad}_{G}^{*}(g)F(a,b,c) = F(a+c\mu, b-c\lambda, c),$$
 (1.7.2)

where $g = (\lambda, \mu, \kappa) \in G$. So the coadjoint G-orbit $\Omega_{a,b}$ at $F(a, b, 0) \in \mathfrak{g}^*$ is given by

$$\Omega_{a,b} = \operatorname{Ad}_{G}^{*}(G) F(a,b,0) = \{F(a,b,0)\}, \text{ a single point.}$$
(1.7.3)

And for any $a, b \in \mathbb{R}^{(m,n)}$ and $c \in \text{Sym}(m,\mathbb{R})$ with $1 \leq k = \text{rank } c \leq m$, the coadjoint *G*-orbit $\Omega_{a,b,c,k}$ at $F(a,b,c) \in \mathfrak{g}^*$ is given by

$$\Omega_{a,b,c,k} = \left\{ F(a+c\mu, b-c\lambda, c) \mid \lambda, \mu \in \mathbb{R}^{(m,n)} \right\} \cong \mathbb{R}^{(k,n)} \times \mathbb{R}^{(k,n)}.$$
(1.7.4)

Therefore the coadjoint G-orbits in \mathfrak{g}^* fall into two classes:

- (I) The single points $\{\Omega_{a,b} \mid a, b \in \mathbb{R}^{(m,n)}\}$ located in the plane c = 0.
- (II) The affine planes $\left\{ \Omega_{a,b,c,k} \mid a, b \in \mathbb{R}^{(m,n)}, c \in \operatorname{Sym}(m,\mathbb{R}), 1 \leq \operatorname{rank} c = k \leq m \right\}$.

In other words, the orbit space $\mathcal{O}(G)$ of coadjoint orbits is parametrized by

$$\begin{cases} a, b \in \mathbb{R}^{(m,n)}, \ c \in \operatorname{Sym}(m,\mathbb{R}), \ 1 \le k = \operatorname{rank} c \le m; \\ (a,b) - \operatorname{plane} \cong \mathbb{R}^{(m,n)} \times \mathbb{R}^{(m,n)}. \end{cases}$$

Definition. (a) The single point coadjoint orbits of the type $\Omega_{a,b}$ are said to be the extremely degenerate G-orbits in \mathfrak{g}^* .

- (b) The flat coadjoint orbits of the type $\Omega_{a,b,c,k}$ with $1 \le k = \operatorname{rank} c < m$ are said to be the (m-k)-degenerate G-orbits in \mathfrak{g}^* .
- (c) The flat coadjoint orbits of the type $\Omega_{a,b,c,m}$ with rank c = m are said to be the nondegenerate *G*-orbits in \mathfrak{g}^* .

Since G is a connected and simply connected 2-step nilpotent Lie group, according to A. Kirillov (cf. [16] or [17, Theorem 1, p. 249]), the unitary dual \hat{G} of G is given by

$$\widehat{G} = \prod_{a,b,c,k} \Omega_{a,b,c,k} \prod \left(\mathbb{R}^{(m,n)} \times \mathbb{R}^{(m,n)} \right), \qquad (1.7.5)$$

where \coprod denotes the disjoint union, a and b run over $\mathbb{R}^{(m,n)}$ and c $(1 \leq k = \operatorname{rank} c \leq m)$ runs over $\operatorname{Sym}(m, \mathbb{R})$. We observe that $\Omega_{a,b,c,k} \cong \mathbb{R}^{(k,n)} \times \mathbb{R}^{(k,n)}$. The topology of \widehat{G} may be described as follows. The topology on $\{\Omega_{a,b,c,k} \mid a, b \in \mathbb{R}^{(m,n)}, 0 \neq c \in \operatorname{Sym}(m, \mathbb{R}), 1 \leq k \leq m\}$ is the usual topology of the Euclidean space and the topology on $\{F(a, b, 0) \mid a, b \in \mathbb{R}^{(m,n)}\}$ is the usual Euclidean topology. But a sequence on $\{\Omega_{a,b,c,k} \mid a, b \in \mathbb{R}^{(m,n)}, 0 \neq c \in \operatorname{Sym}(m, \mathbb{R}), 1 \leq k \leq m\}$ which converges to 0 in the usual topology converges to the whole Euclidean space $\mathbb{R}^{(m,n)} \times \mathbb{R}^{(m,n)} \times \operatorname{Sym}(m, \mathbb{R})$ in the topology of \widehat{G} . This is just the quotient topology on \mathfrak{g}^*/G so that algebraically and topologically $\widehat{G} = \mathfrak{g}^*/G$.

It is well known that each coadjoint orbit is a symplectic manifold. We will state this fact in detail. For the present time being, we fix an element F of \mathfrak{g}^* once and for all. We consider the alternating \mathbb{R} -bilinear form \mathbf{B}_F on \mathfrak{g} defined by

$$\mathbf{B}_{F}(X,Y) \stackrel{\text{def}}{=} \langle F, [X,Y] \rangle = \langle \operatorname{ad}_{\mathfrak{g}}^{*}(Y)F, X \rangle, \quad X, Y \in \mathfrak{g},$$
(1.7.6)

where $\operatorname{ad}_{\mathfrak{g}}^* : \mathfrak{g} \longrightarrow \operatorname{End}(\mathfrak{g}^*)$ denotes the differential of the coadjoint representation $\operatorname{Ad}_G^* : G \longrightarrow GL(\mathfrak{g}^*)$. More precisely, if $F = F(a, b, c), \ X = X(\alpha, \beta, \gamma)$, and $Y = X(\delta, \epsilon, \xi)$, then

$$\mathbf{B}_F(X,Y) = \sigma\{c\left(\alpha^t \epsilon + \epsilon^t \alpha - \beta^t \delta - \delta^t \beta\right)\}.$$
(1.7.7)

For $F \in \mathfrak{g}^*$, we let

$$G_F = \{ g \in G \mid \operatorname{Ad}_G^*(g)F = F \}$$

be the stabilizer of the coadjoint action Ad^* of G on \mathfrak{g}^* at F. Since G_F is a closed subgroup of G, G_F is a Lie subgroup of G. We denote by \mathfrak{g}_F the Lie subalgebra of \mathfrak{g} corresponding to G_F . Then it is easy to show that

$$\mathfrak{g}_F = \operatorname{rad} \mathbf{B}_F = \left\{ X \in \mathfrak{g} \mid \operatorname{ad}_{\mathfrak{g}}^*(X)F = 0 \right\}.$$
(1.7.8)

Here rad \mathbf{B}_F denotes the radical of \mathbf{B}_F in \mathfrak{g} . We let \mathbf{B}_F be the non-degenerate alternating \mathbb{R} -bilinear form on the quotient vector space $\mathfrak{g}/\operatorname{rad} \mathbf{B}_F$ induced from \mathbf{B}_F . Since we may identify the tangent space of the coadjoint orbit $\Omega_F \cong G/G_F$ with $\mathfrak{g}/\mathfrak{g}_F = \mathfrak{g}/\operatorname{rad} \mathbf{B}_F$, we see that the tangent space of Ω_F at F is a symplectic vector space with respect to the symplectic form $\dot{\mathbf{B}}_F$.

Now we are ready to prove that the coadjoint orbit $\Omega_F = \operatorname{Ad}_G^*(G)F$ is a symplectic manifold. We denote by \widetilde{X} the smooth vector field on \mathfrak{g}^* associated to $X \in \mathfrak{g}$. That means that for each $\ell \in \mathfrak{g}^*$, we have

$$\widetilde{X}(\ell) = \mathrm{ad}_{\mathfrak{g}}^*(X) \ \ell. \tag{1.7.9}$$

We define the differential 2-form B_{Ω_F} on Ω_F by

$$B_{\Omega_F}(\widetilde{X},\widetilde{Y}) = B_{\Omega_F}(\mathrm{ad}_{\mathfrak{g}}^*(X)F, \mathrm{ad}_{\mathfrak{g}}^*(Y)F) := \mathbf{B}_F(X,Y), \qquad (1.7.10)$$

where $X, Y \in \mathfrak{g}$.

Lemma 19. B_{Ω_F} is non-degenerate.

Proof. Let \widetilde{X} be the smooth vector field on \mathfrak{g}^* associated to $X \in \mathfrak{g}$ such that $B_{\Omega_F}(\widetilde{X}, \widetilde{Y}) = 0$ for all \widetilde{Y} with $Y \in \mathfrak{g}$. Since $B_{\Omega_F}(\widetilde{X}, \widetilde{Y}) = \mathbf{B}_F(X, Y) = 0$ for all $Y \in \mathfrak{g}$, $X \in \mathfrak{g}_F$. Thus $\widetilde{X} = 0$. Hence B_{Ω_F} is non-degenerate.

Lemma 20. B_{Ω_F} is closed.

Proof. If $\widetilde{X_1}$, $\widetilde{X_2}$, and $\widetilde{X_3}$ are three smooth vector fields on \mathfrak{g}^* associated to $X_1, X_2, X_3 \in \mathfrak{g}$, then

$$\begin{split} & dB_{\Omega_F}(\widetilde{X}_1, \widetilde{X}_2, \widetilde{X}_3) \\ &= \widetilde{X}_1(B_{\Omega_F}(\widetilde{X}_2, \widetilde{X}_3)) - \widetilde{X}_2(B_{\Omega_F}(\widetilde{X}_1, \widetilde{X}_3)) + \widetilde{X}_3(B_{\Omega_F}(\widetilde{X}_1, \widetilde{X}_2)) \\ & -B_{\Omega_F}([\widetilde{X}_1, \widetilde{X}_2], \widetilde{X}_3) + B_{\Omega_F}([\widetilde{X}_1, \widetilde{X}_3], \widetilde{X}_2) - B_{\Omega_F}([\widetilde{X}_2, \widetilde{X}_3], \widetilde{X}_1) \\ &= -\langle F, [[X_1, X_2], X_3] + [[X_2, X_3], X_1] + [[X_3, X_1], X_2] \rangle \\ &= 0 \qquad \text{(by the Jacobi identity).} \end{split}$$

Therefore B_{Ω_F} is closed.

In summary, (Ω_F, B_{Ω_F}) is a symplectic manifold of dimension 2 k n $(1 \le k \le m)$ or 0. In order to describe the irreducible unitary representations of G corresponding to the coadjoint orbits under the Kirillov correspondence, we have to determine the polarizations of \mathfrak{g} for the linear forms $F \in \mathfrak{g}^*$.

JAE-HYUN YANG

Case I. $F = F(a, b, 0), a, b \in \mathbb{R}^{(m,n)}$; the extremely degenerate case.

According to (1.7.3), $\Omega_F = \Omega_{a,b} = \{F(a,b,0)\}$ is a single point. It follows from (1.7.7) that $\mathbf{B}_F(X,Y) = 0$ for all $X, Y \in \mathfrak{g}$. Thus \mathfrak{g} is the unique polarization of \mathfrak{g} for F. The Kirillov correspondence says that the irreducible unitary representation $\pi_{a,b}$ of G corresponding to the coadjoint orbit $\Omega_{a,b}$ is given by

$$\pi_{a,b}(\exp X(\alpha,\beta,\gamma)) = e^{2\pi i \langle F,X(\alpha,\beta,\gamma)\rangle} = e^{4\pi i \,\sigma(\,^t a\alpha \,+\,^t b\beta)}.$$
(1.7.11)

That is, $\pi_{a,b}$ is a one-dimensional extremely degenerate representation of G.

Case II. $F = F(a, b, c), a, b \in \mathbb{R}^{(m,n)}, c \in \text{Sym}(m, \mathbb{R}) \text{ with } 1 \le \text{rank} c \le m;$

According to (1.7.4),

$$\Omega_F = \Omega_{a,b,c,k} = \left\{ F(a + c\,\mu, b - c\,\lambda, c) \mid \lambda, \mu \in \mathbb{R}^{(m,n)} \right\}.$$

By (1.7.7), we see that

$$\mathfrak{k} = \left\{ X(0,\beta,\gamma) \mid \beta \in \mathbb{R}^{(m,n)}, \ \gamma \in \operatorname{Sym}(m,\mathbb{R}) \right\}$$
(1.7.12)

is a polarization of \mathfrak{g} for F, i.e., \mathfrak{k} is a Lie subalgebra of \mathfrak{g} subordinate to $F \in \mathfrak{g}^*$ which is maximal among the totally isotropic vector subspaces of \mathfrak{g} relative to the alternating \mathbb{R} -bilinear form \mathbf{B}_F . Let K be the simply connected Lie subgroup of G corresponding to the Lie subalgebra \mathfrak{k} of \mathfrak{g} . We let

$$\chi_{a,b,c,k;\mathfrak{k}}:K\longrightarrow\mathbb{C}_1^{\times}$$

be the unitary character of K defined by

$$\chi_{a,b,c,k;\mathfrak{k}}(\exp X(0,\beta,\gamma)) = e^{2\pi i \langle F,X(0,\beta,\gamma)\rangle} = e^{2\pi i \sigma(c \gamma + 2\beta t_b)}.$$
(1.7.13)

The Kirillov correspondence says that the irreducible unitary representation $\pi_{a,b,c,k;\mathfrak{k}}$ of G corresponding to the coadjoint orbit $\Omega_F = \Omega_{a,b,c,k}$ is given by

$$\pi_{a,b,c,k;\mathfrak{k}} = \operatorname{Ind}_{K}^{G} \chi_{a,b,c,k;\mathfrak{k}}.$$
(1.7.14)

For $a, b, \tilde{a}, \tilde{b} \in \mathbb{R}^{(m,n)}$, we have

$$\pi_{a,b,c,k;\mathfrak{k}}(\exp X(0,0,\gamma)) = \pi_{\widetilde{a},\widetilde{b},c,k;\mathfrak{k}}(\exp X(0,0,\gamma))$$

for all $\gamma \in \text{Sym}(m, \mathbb{R})$. According to Kirillov's Theorem (cf. [16]), $\pi_{a,b,c,k;\mathfrak{k}}$ is unitarily equivalent to $\pi_{\tilde{a},\tilde{b},c,k;\mathfrak{k}}$ for all $a, b, \tilde{a}, \tilde{b} \in \mathbb{R}^{(m,n)}$. So we denote the equivalence class of $\pi_{a,b,c,k;\mathfrak{k}}$ by $\pi_{c,k;\mathfrak{k}}$. According to Kirillov's Theorem (cf. [16]), we know that the induced representation $\pi_{c,k;\mathfrak{k}}$ is, up to equivalence, independent of the choice of a polarization of \mathfrak{g} for F. Thus we denote the equivalence class of $\pi_{c,k;\mathfrak{k}}$ by $\pi_{c,k}$. We see that $\pi_{c,k}$ is realized on the representation space $L^2(\mathbb{R}^{(m,n)}, d\xi)$ as follows:

$$(\pi_{c,k}(g)f)(\xi) = e^{2\pi i \,\sigma \{c(\kappa + \mu^{t}\lambda + 2\,\xi^{t}\mu)\}} f(\xi + \lambda), \qquad (1.7.15)$$

where $g = (\lambda, \mu, \kappa) \in G$ and $\xi \in \mathbb{R}^{(m,n)}$. Using the fact that

$$\exp X(\alpha,\beta,\gamma) = \left(\alpha,\beta,\gamma + \frac{1}{2} \left(\alpha^{t}\beta - \beta^{t}\alpha\right)\right),\,$$

we see that $\pi_{c,k}$ is nothing but the Schrödinger representation $U_c = U(\sigma_c)$ of G induced from the one-dimensional unitary representation σ_c of K given by $\sigma_c((0,\mu,\kappa)) = e^{2\pi i \sigma(c\kappa)} I$ (cf. (1.4.6) and (1.4.8)). We note that $\pi_{c,k}$ is the representation of G with central character $\chi_{c,k}: \mathfrak{Z} \longrightarrow \mathbb{C}_1^{\times}$ given by $\chi_{c,k}((0,0,\kappa)) = e^{2\pi i \,\sigma(c \,\kappa)}$. Here $\mathfrak{Z} = \{(0,0,\kappa) \mid \kappa \in \operatorname{Sym}(m,\mathbb{R}) \}$ denotes the center of G.

It is well known that the monomial representation $(\pi_{c,k}, L^2(\mathbb{R}^{(m,n)}, d\xi))$ of G extends to an operator of trace class

$$\pi^{1}_{c,k}(\phi): L^{2}(\mathbb{R}^{(m,n)}, d\xi) \longrightarrow L^{2}(\mathbb{R}^{(m,n)}, d\xi)$$
(1.7.16)

for all $\phi \in C_c^{\infty}(G)$. Here $C_c^{\infty}(G)$ is the vector space of all smooth functions on G with compact support. We let $C_c^{\infty}(\mathfrak{g})$ and $C(\mathfrak{g}^*)$ the vector space of all smooth functions on \mathfrak{g} with compact support and the vector space of all continuous functions on \mathfrak{g}^* respectively. If $f \in C_c^{\infty}(\mathfrak{g})$, we define the Fourier cotransform

$$\mathcal{C}F_{\mathfrak{g}}: C_c^{\infty}(\mathfrak{g}) \longrightarrow C(\mathfrak{g}^*)$$

by

$$\left(\mathcal{C}F_{\mathfrak{g}}(f)\right)(F') := \int_{\mathfrak{g}} f(X) \, e^{2\pi i \, \langle F', X \rangle} dX, \qquad (1.7.17)$$

where $F' \in \mathfrak{g}^*$ and dX denotes the usual Lebesgue measure on \mathfrak{g} . According to A. Kirillov (cf. [47]), there exists a measure β on the coadjoint orbit

$$\Omega_{a,b,c,k} \approx \mathbb{R}^{(k,n)} \times \mathbb{R}^{(k,n)}$$

$$(a, b \in \mathbb{R}^{(m,n)}, c \in \operatorname{Sym}(m, \mathbb{R}), \operatorname{rank} c = k, 1 \le k \le m)$$

which is invariant under the coadjoint action of G such that

$$\operatorname{tr} \pi^{1}_{c,k}(\phi) = \int_{\Omega_{c}} \mathcal{C}F_{\mathfrak{g}}(\phi \circ \exp)(F')d\beta(F')$$
(1.7.18)

holds for all test functions $\phi \in C_c^{\infty}(G)$, where exp denotes the exponentional mapping of \mathfrak{g} onto G. We recall that

$$\pi_{c,k}^{1}(\phi)(f) := \int_{G} \phi(x) \left(\pi_{c,k}(x)f\right) dx,$$

where $\phi \in C_c^{\infty}(G)$ and $f \in L^2(\mathbb{R}^{(m,n)}, d\xi)$. By the Plancherel theorem, the mapping

$$S(G/\mathfrak{Z}) \ni \varphi \longmapsto \pi^1_{c,k}(\varphi) \in \mathrm{TC}(L^2(\mathbb{R}^{(m,n)}, d\xi))$$

extends to a unitary isometry

$$\pi_{c,k}^2 : L^2(G/\mathfrak{Z}, \chi_{c,k}) \longrightarrow \mathrm{HS}\big(L^2\big(\mathbb{R}^{(m,n)}, d\xi\big)\big)$$
(1.7.19)

of the representation space $L^2(G/\mathfrak{Z},\chi_{c,k})$ of $\operatorname{Ind}_{\mathfrak{Z}}^G\chi_{c,k}$ onto the complex Hilbert space $\operatorname{HS}(L^2(\mathbb{R}^{(m,n)},d\xi))$ consisting of all Hilbert-Schmidt operators on $L^2(\mathbb{R}^{(m,n)},d\xi)$, where $S(G/\mathfrak{Z})$ is the Schwartz space of all infinitely differentiable complex-valued functions on $G/\mathfrak{Z} \cong \mathbb{R}^{(m,n)} \times \mathbb{R}^{(m,n)}$ that are rapidly decreasing at infinity and $\operatorname{TC}(L^2(\mathbb{R}^{(m,n)},d\xi))$ denotes the complex vector space of all continuous \mathbb{C} -linear mappings of $L^2(\mathbb{R}^{(m,n)},d\xi)$ into itself which are trace class.

In summary, we have the following result.

Theorem 9. For $F = F(a, b, 0) \in \mathfrak{g}^*$, the irreducible unitary representation $\pi_{a,b}$ of G corresponding to the coadjoint orbit $\Omega_F = \Omega_{a,b}$ under the Kirillov correspondence is an extremely degenerate representation of G given by

$$\pi_{a,b}\big(\exp X(\alpha,\beta,\gamma)\big) = e^{4\pi i\,\sigma(ta\alpha+tb\beta)}.$$

JAE-HYUN YANG

On the other hand, for $F = F(a, b, c) \in \mathfrak{g}^*$ with $a, b \in \mathbb{R}^{(m,n)}$, $c \in Sym(m, \mathbb{R})$ with $1 \leq k = \operatorname{rank} c \leq m$, the irreducible unitary representation $(\pi_{c,k}, L^2(\mathbb{R}^{(m,n)}, d\xi))$ of G corresponding to the coadjoint orbit $\Omega_{a,b,c,k}$ under the Kirillov correspondence is unitary equivalent to the Schrödinger representation $(U_c, L^2(\mathbb{R}^{(m,n)}, d\xi))$ and this representation $\pi_{c,k}$ is square integrable modulo its center \mathfrak{Z} . For all test functions $\phi \in C_c^{\infty}(G)$, the character formula

$$\operatorname{Tr}\left(\pi_{c,k}^{2}(\phi)\right) = \mathcal{C}(\phi,c) \int_{\operatorname{Sym}(m,\mathbb{R})} \phi(0,0,\kappa) e^{2\pi i \,\sigma(c\kappa)} d\kappa$$

holds for some constant $C(\phi, c)$ depending on ϕ and c, where $d\kappa$ is the Lebesgue measure on the Euclidean space $Sym(m, \mathbb{R})$.

Now we consider the subgroup K of G (cf. (1.4.1)) given by

$$K := \{ (0, \mu, \kappa) \in G \mid \mu \in \mathbb{R}^{(m,n)}, \ \kappa \in \operatorname{Sym}(m, \mathbb{R}) \}.$$

The Lie algebra \mathfrak{k} of K is given by (1.7.12). The dual space \mathfrak{k}^* of \mathfrak{k} may be identified with the space

$$\{F(0,b,c) \mid b \in \mathbb{R}^{(m,n)}, c \in \operatorname{Sym}(m,\mathbb{R})\}.$$

We let $\operatorname{Ad}_{K}^{*}: K \longrightarrow GL(\mathfrak{k}^{*})$ be the coadjoint representation of K on \mathfrak{k}^{*} . The coadjoint K-orbit $\omega_{b,c,k}$ at $F(0,b,c) \in \mathfrak{k}^{*}$ with $k = \operatorname{rank} c$ is given by

$$\omega_{b,c,k} = \operatorname{Ad}_{K}^{*}(K) F(0,b,c) = \{ F(c\mu, b, c) \mid \mu \in \mathbb{R}^{(m,n)} \}.$$
(1.7.20)

Since K is a commutative group, $[\mathfrak{k}, \mathfrak{k}] = 0$ and so the alternating \mathbb{R} -bilinear form \mathbf{B}_F on \mathfrak{k} associated to F := F(0, b, c) identically vanishes on $\mathfrak{k} \times \mathfrak{k}$ (cf. (1.7.6)). \mathfrak{k} is the unique polarization of \mathfrak{k} for F = F(0, b, c). The Kirillov correspondence says that the irreducible unitary representation $\chi_{b,c}$ of K corresponding to the coadjoint orbit $\omega_{b,c}$ is given by

$$\chi_{b,c}\big(\exp X(0,\beta,\gamma)\big) = e^{2\pi i \langle F(0,b,c), X(0,\beta,\gamma)\rangle} = e^{2\pi i \sigma(2b^{t}\beta + c\gamma)}$$
(1.7.21)

or

$$\chi_{b,c}((0,\mu,\kappa)) = e^{2\pi i \,\sigma(2 \,b^{\,t}\mu + c \,\kappa)}, \quad (0,\mu,\kappa) \in K.$$
(1.7.22)

For $0 \neq c \in \text{Sym}(m, \mathbb{R})$ with $1 \leq k = \text{rank } c \leq m$, we let $\pi_{c,k}$ be the Schrödinger representation of G given by (1.7.15). We know that $\pi_{c,k}$ is the irreducible unitary representation of G corresponding to the coadjoint orbit

$$\Omega_{a,b,c,k} = \operatorname{Ad}_{G}^{*}(G) F(a,b,c) = \left\{ F(a+c\mu, b-c\lambda, c) \, | \, a, b \in \mathbb{R}^{(m,n)} \right\}.$$

Let $p: \mathfrak{g}^* \longrightarrow \mathfrak{k}^*$ be the natural projection defined by p(F(a, b, c)) = F(0, b, c). Obviously we have

$$p(\Omega_{a,b,c,k}) = \left\{ F(0,b,c) \mid b \in \mathbb{R}^{(m,n)} \right\} = \bigcup_{b \in \mathbb{R}^{(m,n)}} \omega_{b,c,k}.$$

According to Kirillov's Theorem (cf. [17, Theorem 1, p. 249], the restriction $\pi_{c,k}|_K$ of $\pi_{c,k}$ to K is the direct integral of all one-dimensional representations $\chi_{b,c}$ of K ($b \in \mathbb{R}^{(m,n)}$). Conversely, we let $\chi_{b,c}$ be the element of \widehat{K} corresponding to the coadjoint orbit $\omega_{b,c,k}$ of K. The induced representation $\operatorname{Ind}_K^G \chi_{b,c}$ is nothing but the Schrödinger representation $\pi_{c,k}$. The coadjoint orbit $\Omega_{a,b,c,k}$ of G is the only coadjoint orbit such that $\Omega_{a,b,c,k} \cap p^{-1}(\omega_{b,c,k})$ is nonempty.

Yang Institute for Advanced Study Seoul 07989, Korea

 $\overline{7}$

AND

DEPARTMENT OF MATHEMATICS INHA UNIVERSITY INCHEON 22212, KOREA Email address: jhyang@inha.ac.kr or yangsiegel@naver.com